对于体内那些存在明显缺陷的细胞,尤其是DNA遭到严重的不可修复的损害的细胞而言,凋亡是惟一的选择。通过某种未知方式,细胞能够感知自己的基因组是否严重受损。细胞不再试图修复创伤,而是按规定自杀。
然而,有许多仅仅受了轻微伤害,仍然生机勃勃的细胞也被打发到了凋亡之路上。初初一看,这种自杀行为实在太浪费了。组织不断地生成新的细胞,代管那些被剔除的只有些微缺陷的细胞,肆意挥霍有用资源。可是,比起让一个受损的、也许已经突变的细胞继续存在最终带来的风险,这点资源的消耗仍属小巫见大巫。这就说明,凋亡的一个重要作用就是迅即消灭全身各处组织的越轨细胞,防止它们给党生事。
细胞内部的生长控制系统存在一点点的失控就会触发死亡程序。这种失控可能发生于癌细胞内部,与代谢失衡及生长信号不当有关。例如,把一个my C癌基因注入一个正常细胞,会引起信号失衡,导致许多细胞启动凋亡性死亡程序。也就是说,很多通过某种意外突变获得了川yC癌基因的细胞都会迅速死于凋亡。也许其中有一小部分细胞通过这样那样的方法,躲过了几无可避的杀身之祸。事实上,当细胞内的某个癌基因被激活时,这些细胞都被规定必须自杀。生物体在所有细胞中都埋设了地雷线。这些报警装置,通过使早期癌细胞迅速自取灭亡,为组织肿瘤的形成构筑了路障。
我们认为,走在癌变之路上的细胞必定仔细研究过凋亡的雷区。在获得了某个促进生长的癌基因后,细胞必须设法避免凋亡。这种闪避有时是通过第二次突变完成的。例如,一个激活的my C癌基因常常会触发凋亡,但在某种情况下,ras癌基因的后继激活会使细胞避免凋亡。
免疫系统最能说明突变对于规避凋亡性死亡的作用。前面讲过,免疫细胞如果不能制造适当的抗体,就会被凋亡消灭。某类淋巴细胞是免疫系统发育过程中的主角,其中有超过95%的细胞是被用这种方式抛弃的。我们现在看到,组织消灭的细胞不仅包括存在明显缺陷的和危及生命的细胞,而且包括那些仅仅是非生产性的细胞.
淋巴细胞对这种死亡程序的抗争也会导致癌症。BC2癌基因专门阻止死亡程序的触发,淋巴细胞通过激活该基因可以胜利大逃亡。拥有一个活性BC2癌基因的淋巴细胞群将开始大量扩张,逃过几乎不可避免的凋亡厄运。这些细胞不是恶性的,它们只会累积到庞大的数目。可是,几年之后,其中一些增量细胞也许会经历其他突变,包括激活周Uc癌基因,然后它们就会变成真正的恶性后代细胞,导致淋巴瘤。越来越多的证据表明,还有其他类型的癌细胞也是要么通过突变,要么使BC2癌基因过度表达来激活BC2,确保自己的长期存活。
在各类癌症中,单纯从数量上来判断是否属于癌前细胞,会使肿瘤获得羽翼丰满的机会。要形成致命的肿瘤,细胞不仅必须提高自己的繁殖能力同时必须找到躲避死亡的途径。通过获取某个活性癌基因,有些癌前细胞群也许成功地提高了自己的繁殖率,但是它们也许并不能摆脱凋亡和老化的威胁;它们通过增加繁殖获得的任何利益,都可能被等速甚至更快的细胞死亡抵消。细胞群的净收益也许是规模恒定甚至缩减。只有解决了细胞的死亡问题,细胞群才能开始迅速扩张,导致马尔萨斯式的增长”。基因组的卫士,死亡程序的主宰:p53
有很多中枢控制者影响着细胞作出凋亡与否的决定,其中最有名的是P53肿瘤抑制基因。它通过自己的蛋白质发挥作用,成为生与死的裁判和主管细胞的健康安宁的高度警惕的卫土。它在细胞机制受损或者在细胞开始胡作非为时,敲响丧钟。在自身DNA受损后细胞的反应中,P53的作用最为显著。DNA聚合酶无常的复制错误中,人体细胞的基因组总是处在风雨飘摇的状态。细胞对遗传损害有两种反应:要么使用我们先前描述过的修复机制试图弥补缺损;要么拱手言政,进入细胞编程性死亡。如果突变造成的损害较小,细胞会作修复的努力;如果受到严重损害,修复机制力有不逮,细胞别无选择,只有凋亡。
细胞一般依靠P53蛋白质帮助感知DNA损害。与其他肿瘤抑制蛋白一样,p53蛋白阻止细胞增殖,为修复机制赢得搜索和修复受损碱基序列的时间。一旦消除了损害,P53就功成而退,使细胞继续生长。
这种反应背后的逻辑很简单。暂停使细胞不能进入需要复制DNA的生长阶段。只有当成功地修复了DNA的损害后,p53蛋白才会颁发进入DNA复制阶段的许可证,保证复制酶--DNA聚合酶--不至于粗心大意地复制受损的DNA,使得突变代代相传,产生存在同样缺陷的后代细胞。
如果DNA大面积受损,则会有截然不同的反应。与前面一样,细胞中的p53蛋白达到了很高的浓度。细胞再次被迫停下生长的脚步。但是这一次,细胞的损害评估机制将衡量遗传授损的范围,以决定是否激活另一反应:启动凋亡程序。结果迅捷而明确:细胞约在1小时内死亡,同时死去的是它新近遭受重创的基因。不错,细胞凋亡作出的牺牲是显著浪费了生化资源,可是从长远角度考虑,比起在组织中出现某个突变的、高度癌变的细胞,这种选择是非常合算的。
早期癌细胞通过突变失活P53基因的好处很明显。一旦某个细胞击垮了p53基因,就会严重削弱自己的损害反应通路。后果之一就是,即便细胞及其后代的基因组受到严重损害,细胞们也能继续繁殖。由于缺少功能正常的户53,这些细胞将突飞猛进地复制它们已然受损的DNA,将未作修复的功能障碍纳入新产出的基因组复制酶中。于是,突变基因组可以延递不绝了。
通常情况下,激活原癌基因、失活肿瘤抑制基因是一个缓慢的突变过程,但是如果没有尽忠职守的p53存在,将大大加快这个进程。由于这些突变事件限制了肿瘤的扩张速度,因此户53不动声色,将大大加速肿瘤细胞群的进化,使成熟的肿瘤提前出现。总而言之,失去P53与DNA修复机制的重大缺陷一样,摧毁了稳定的基因组。
培养皿中的正常细胞有一种轻微倾向,几乎难以察觉,就是过度累积基因副本。可是如果缺乏功能正常的p53,这种过度累积基因副本的倾向将增大1000倍。如前所述,这种基因“扩增”,将会导致mpc、erb B和erb BZ/neu这样促进生长的癌基因不断增加副本。很多种癌症,如脑瘤、胃癌、乳腺癌和卵巢癌以及儿童视网膜神经胶质瘤等,在它们的形成过程中,都经常会出现这些基因的扩增现象。
所有肿瘤细胞几乎都掌握了长生不老的本事,P53的失活在肿瘤细胞的不死过程中助了一臂之力。不死的障碍是端粒的缩减和瓦解。一旦端粒耗减到一定的程度,细胞内部会拉响第一次警报,停止生长,进入垂暮状态。细胞似乎能够像感知DNA的损害一样,感觉到端粒的缩短。为回应这一紧急遗传事件,细胞动员了P53,通常是切断细胞的生长。这些细胞将长期处在暮年的静止状态。
没有P53的细胞,对端粒的耗减视而不见,继续生长。它们冲锋陷阵,继续繁殖上10代或20代细胞,将老化远远抛在脑后。此时,由于端粒继续缩短,短到一定程度,细胞内拉响了第二次警报。这时细胞会大批死亡,只有那些复活了瑞粒酶的少数变体细胞能够逃脱这一劫,修复端粒,获得永生。尽管p53的失活并不能创造出不死的细胞,但是它使肿瘤细胞获得了竞逐金腰带--通过复活端粒酶获得永生--的机会。
最近,p53失活的另一面展露人前。肿瘤块中的癌细胞由于供血不足导致缺氧,因为缺氧--氧气饥渴--而停止生长。正常细胞的缺氧状态持续事件过长,细胞就会凋亡。p53似乎是反应中介。很多肿瘤细胞中p53基因会被突变失活,这些细胞就具备了超常的耐受力,能一直坚持到成功建立充足血供的时刻,然后恢复通行无阻的迅速增殖。
细胞中p53蛋白的状态对癌症的治疗也有直接影响。所有治疗癌症的方法-一化疗和放疗--一几乎都是通过损害肿瘤细胞来操作的。化疗会直接作用于DNA碱基,改变DNA结构;或者影响DNA复制酶。X线也会对DNA双螺旋造成难以弥补的损害。
30年来,人们设想这些抗癌疗法通过大面积地破坏DNA可以杀死癌细胞。这种破坏当然会压倒癌细胞的修复机制。由于癌细胞染色体的DNA被撕成碎片,癌细胞将停止生长,一命呜呼。
现在我们知道抗癌疗法通常走的是另一条路。剂量足以杀死癌细胞的化疗和X线,实际上并没有给癌细胞的基因组造成大范围的损害。相反,这些治疗方法造成的破坏刚刚够激活P53以及细胞编程性死亡。因此,治疗癌症不是大力击杀癌细胞,而是扭曲癌细胞的控制机制,将它们推过正常生长和凋亡性死亡的分界线。
这就说明了为什么在决定细胞对抗癌疗法的反应过程中,p53总是一个关键角色。正如最近的观察结果,癌细胞丧失p53功能后常常更具耐药性,显然是因为难以哄骗癌细胞自杀。这些研究成果对于治疗癌症有重大意义,很快,医务人员就能根据患者肿瘤细胞中p53基因的情况来调整治疗方案了。
上一篇:影响微生物检验质量的因素分析
下一篇:临床微生物学检验数据管理系统及应用