微生物固体培养基凝固剂研究进展
在一般常态培养温度下呈固体状态的培养基都称固体培养基。固体培养基的凝固剂一般不是微生物的营养成分,只起固化或粘合作用。常见凝固剂有琼脂、明胶、无机硅胶等[1]。此外,由于微生物快速检测的巨大需求而研制的微生物快速测试片,是通过凝固剂将营养成份和特异显色物质粘附在塑料载体上而成,使用前不需进行培养基制备和加热而可直接应用。测试片中凝固剂有瓜尔胶、黄原胶、刺槐豆胶、聚丙烯酸系高分子化合物等[2]。
1 琼脂
1.1 琼脂的成分与分子结构 琼脂(agar)产自石花菜或其他几种红海藻,包含有两个组分:一个是可以形成结实而强力的凝胶,称“琼脂糖”(agarose);另一个则是不会发生凝胶化的组分,称“琼脂胶”(a garopectin)。琼脂糖约占天然琼脂80%,琼脂胶是琼脂糖的硫酸酯。由于琼脂的来源不同,琼脂糖和琼脂胶的含量也随之变化[3]。琼脂糖分子以线型链的形式存在,它是红海藻的一个成分,与iota 和kappa 卡拉胶成镜像关系。这一线型分子链包含有以(1→3)联结的β-D 吡喃半乳糖基单元(A单元)与以(1→4)联结的3,6 失水α-D 吡喃半乳糖基单元(B单元)相联结。A单元及B单元构成二糖单元,因3,6 失水环接近于每个B单元,它可以很容易变化而发生水解。琼脂糖的二糖单元及二级结构可表示如图1[3,4]:
1.3 琼脂的凝胶化原理 凝胶化是指体型缩聚反应进行到一定程度,反应体系的黏度突然增加,并且出现具有弹性凝胶的现象。此时,体系中包含了两部分:一部分是凝胶,它具巨型网络结构,不溶于一切溶剂;另一部分是溶胶,其分子量较小,被笼罩在凝胶的网络结构中[6]。因此,凝胶是介于固体和液体之间的一种物质状态。根据交联方式,凝胶可分为化学交联和物理交联两种。化学交联是高分子链段间以共价键交联起来,这种交联很牢固,使高分子只发生溶胀,而不能熔融更不溶解。物理交联包括有氢键、库伦力、配位键及物理缠结等形成的线性分子间的交联[7]。琼脂依靠高分子链段相互作用间可形成氢键而成为凝胶结构。这种氢键会因加热等而被破坏,使凝胶变为溶胶[8]。琼脂的凝胶化主要是其琼脂糖之间氢键结合的结果,其含有的大量的水在网络结构稳定上发挥了重要的作用[9]。凝胶中水有几种状态存在,在高分子网络附近的水与网络有很强的相互作用。将紧挨着高分子网络的,在极低温度下也不冻结的水称为不冻水;而将在
1. 4 琼脂在微生物固体培养基凝固剂方面的应用 琼脂是微生物固体培养基和半固体培养基中最常用的性能优良的凝固剂。在液体培养基中加10~
2 明胶明胶(gelatin)是胶原蛋白经适度降解变性而得到的产物。作为一种蛋白质,明胶的氨基酸组成较为特殊,其含硫氨基酸很少,而甘氨酸、丙氨酸、脯氨酸和羟脯氨酸四种氨基酸含量很高,约占总氨基酸的67%。明胶大分子是由若干种氨基酸以肽键和次级键连接而成,肽键和次级键决定了大分子的结构,次级键有氢键、盐键、疏水键、酯键和二硫键等。明胶溶液的温度在熔点以上时其分子呈无规则线团构象。当温度降至凝固点以下时,明胶分子的某些链段复旋为左手螺旋。相邻3条左手螺旋链间产生氢键交联,复性为类似胶原的右手超螺旋结构[14]。明胶成品为无色或淡黄色的透明薄片或微粒。明胶不溶于冷水,但可缓慢吸水膨胀软化,明胶可吸收相当于其重量5~10倍的水。明胶可溶于热水,形成热可逆性凝胶[14]。明胶是最早用来作为凝固剂的物质,用量为液体培养基的5%~12%。可是由于明胶的融化温度(约
3 无机硅胶硅胶(silicagel)是由多聚硅酸经分子内脱水而形成的一种多孔性物质,其化学组Si02·XH20,属于无定性结构。硅胶不溶于水和任何溶剂,无毒无味。由于硅胶为多孔性物质,具有较大的比表面,而且表面的羟基具有一定程度的极性,所以有很好的吸水性[15]。用于固体培养基的硅胶是由无机的硅酸钠及硅酸钾被盐酸及硫酸中和时而形成的胶体,它不含有机物,主要用于分离与培养自养微生物的培养基[1]。
4 瓜尔胶瓜尔胶(guargum)是一种高纯化多糖,就分子结构来说是一种非离子化的半乳甘露聚糖,它以β (1→4)键连接的聚D 吡喃甘露糖为主链,D 吡喃半乳糖支链以α (1→6)键连接在主链上,其中甘露糖与半乳糖的摩尔比约为2∶1[16]。瓜尔胶极易溶于冷水和热水、无毒、在一般情况下不形成凝胶,不过在高压灭菌锅灭菌冷却后可以形成凝胶。并且形成的凝胶在
5 卡拉胶卡拉胶(carrageenan)是从海藻中提取来的一种阴离子多糖,其结构根据原料来源不同而不同,可溶于热水,不溶于乙醇、异丙醇等,基本骨架是α 1,3和β 1,4糖苷键交替联结形成的半乳聚糖重复单元。卡拉胶的粘度很大,在浓度低至
6 黄原胶黄原胶(xanthangum)是由D 葡萄糖、D 甘露糖、D 葡萄糖醛酸、乙酸和丙酮酸组成的“五糖重复单元”结构聚合体。主链和侧链间通过氢键形成双螺旋和多重螺旋结构[20]。黄原胶既能溶于热水,又能溶于冷水;不能发生凝胶化;具有很强的粘性,具有高度的生物稳定性,多数酶类不能对其降解[20]。
7 刺槐豆胶刺槐豆胶(locustbeangum)是一种无色,无味的植物胚乳精制多糖。刺槐豆胶是以甘露糖为主链的半乳甘露聚糖,甘露糖与半乳糖的比例为1∶4,分子量大约为300kD。刺槐豆胶本身无凝胶特性,其最重要的特点是与琼脂、卡拉胶及黄原胶等亲水胶体有良好的凝胶协同效应,可使复合后的用量水平很低并改善凝胶组织结构。普通刺槐豆胶在冷水中只有部分溶解,加热至
8 聚丙烯酸系高分子化合物聚丙烯酸系(PAA)高分子化合物是一种化学合成的高吸水性树脂。高吸水性树脂可以吸收自身质量的几百乃至上千倍的水,不但具有优良的吸水性能,而且具有卓越的保水能力;即使加压,所吸收的水也不溢出。自然界中能吸水的物质很多,按其吸水的性质来分,基本上分为两类:一类是物理吸附,其吸水主要是毛细管的吸附原理,所以这类物质吸水能力不高,只能吸收自重的几十倍的水,一旦施压,水就逸出。另一类是化学吸附,是通过化学键的方式把水和亲水性物质结合在一起成为一个整体。此种吸附结合很牢,加压也不会失水。高吸水性树脂是由三维空间网络构成的高聚物,它带有大量亲水基团(如羧基、羟基、羧酸盐、酰胺基等)。它的吸水,既有物理吸附,又有化学吸附。因此,它具有神奇的吸水能力以及较高的保水能力[22]。
9 讨论
虽然琼脂已经被应用了100多年,它的可应用性也得到了大家的充分认可,可是由于其资源的过分开采而导致价格上升,寻找一种较便宜的胶体来代替很有必要。另外,有些情况下琼脂并不适用,如高温培养。这样,需要人们去寻一种新的胶体来代替或兼而用之。过去一段时间里,虽然人们做了大量的尝试,取得了一定的成果,但仍未找到一种可以完全代替之的物质。所以,我们还要继续努力,从琼脂的可应用原理出发,来选择新的胶体或来对现有的胶体改性,以达到应用目的。快速测试片由于其简便、准确、省时、省力、可应用于现场等特点,将会在检测部门广泛推广。可是现有产品的凝固剂吸水性不好,不能快而均匀地吸收水分,使菌体生长不均匀而导致检测结果的偏差。所以寻找一种可用于检测片的胶体也十分重要。随着高分子化学的发展,天然高分子聚合物的凝胶化和流变性原理已越来越透彻,吸水、保水原理也已明确。对其改性得到所需的产品是可能的。聚丙烯酸系高分子化合物的合成机理和方法已经十分成熟,合成可用于测试片的高分子物质也是可行的。
参考文献(略)
下一篇:细菌学各论——埃希菌属